If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3c^2-2c-9=0
a = 3; b = -2; c = -9;
Δ = b2-4ac
Δ = -22-4·3·(-9)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{7}}{2*3}=\frac{2-4\sqrt{7}}{6} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{7}}{2*3}=\frac{2+4\sqrt{7}}{6} $
| -7p=-8p+4 | | 10r=10,000 | | (2·x)+(2·7)=36 | | 6(2y+1,5)=45 | | 11=2y+31 | | 0.2(5p-6)=-9+0.4p | | 60-411/c2=1/2 | | 6x-3-4x=-11 | | 2x−5=-11 | | 10-8f=-8-2f | | d+3d-3D=19 | | 411/2c-60=1/2 | | 5x-8=-83 | | 0.3(10x+2)=-0.6-3x | | 34=7x-11-2 | | x+-8=27 | | 30+2y=-6 | | 3k+4k=7k | | Y+10x=4825 | | 5g-2g+2g-4g=18 | | -6-10=4-4n | | r*3+r*2=20+15 | | 2+3/6=x | | -4+3y=32 | | k/3-2=12 | | 5/6y+5=20 | | 2x+35=355 | | Y+10x+175=5000 | | -1+2r=r | | n-1/6=3/4 | | 8x=35.2 | | 44=4(3+x) |